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1
COMPUTING 2-BODY STATISTICS ON
GRAPHICS PROCESSING UNITS (GPUS)

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to, and the benefit of, U.S.
Provisional Patent Application No. 62/738,228, entitled
“COMPUTING 2-BODY STATISTICS ON GRAPHICS
PROCESSING UNITS (GPUs)” and filed on Sep. 28, 2018,
which is incorporated by reference as if set forth herein in its
entirety.

NOTICE OF GOVERNMENT-SPONSORED
RESEARCH

Government sponsorship notice: This invention was made
with government support 1253980 awarded by the National
Science Foundation. The Government has certain rights in
the invention.

BACKGROUND

Handling analytical workloads efficiently is a major chal-
lenge in today’s scientific domains. Recent studies show
increasing interest in developing database systems for han-
dling scientific data. Traditional database management sys-
tems (DBMSs) still fall short of algorithms and strategies to
satisfy the special needs of scientific applications, which are
very different from those in traditional databases in their data
types and query patterns. In addition, design of efficient
algorithms for data query and analysis are still the main
challenge in scientific areas. In addition, support of complex
mathematical functions in DBMS have become an active
research area.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
with emphasis instead being placed upon clearly illustrating
the principles of the disclosure. Moreover, in the drawings,
like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 is a drawing depicting one of several embodiments
of the present disclosure.

FIG. 2 is a drawing depicting experimental results accord-
ing to various embodiments of the present disclosure.

FIG. 3 is a drawing depicting one of several embodiments
of the present disclosure.

FIG. 4 is a drawing depicting experimental results accord-
ing to various embodiments of the present disclosure.

FIG. 5 is a drawing depicting various embodiments of the
present disclosure.

FIG. 6 is a drawing depicting various embodiments of the
present disclosure.

DETAILED DESCRIPTION

Disclosed are various approaches for calculating 2-body
statistics using a graphics processing unit (GPU). Bearing
many forms and definitions, 2-body statistics (2-BS) are a
type of computational pattern that evaluates all pairs of
points among an N-point data set. Therefore, in relational
algebraic terms, a 2-BS is essentially a Cartesian product
between two datasets (or two instances of the same dataset)
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2

followed by a user-defined aggregate. There are numerous
examples of 2-BS problems: 2-tuple problem, all-point
nearest-neighbor problem, kernel density regression, two-
point angular correlation function, 2-point correlation func-
tion, and spatial distance histogram (SDH), among others.
Another flavor of 2-BS problem takes two datasets as input,
such as radial distribution function (RDF) and relational
joins. Moreover, there are many computing applications that
requires pairwise comparison among all data points, such as
item rating with pairwise comparison, Cosine similarity,
predictive of music preference, ranking with pairwise com-
parison, and N-body simulation.

In general, a 2-BS can be computed by solving a distance
function between all pairs of datum. Although the distance
function only demands constant time to compute for a pair
of data points, the total running time is quadratic to the data
size. Parallel computing techniques, such as those discussed
in further detail herein, can be utilized to speed up the
computation in practice. In the context of 2-BS problems,
parallel computing techniques are extremely useful for two
reasons. First, particular types of 2-BS lack efficient algo-
rithms for calculating the solutions. For example, kernel
functions for Support Vector Machine (SVM) and pairwise
comparison in various applications can only be solved in
quadratic time. Another example is relational joins-although
sort-merge, hash, and index-based algorithms are preferred
for processing equi-joins, nested-loop join is the better
choice for joins with complex non-equality conditions.
Second, performance of more advanced algorithms can be
further improved via parallelization. For example, efficient
join algorithms such as hash join still require complete
pairwise comparison of data (e.g., within the same bucket of
the hash table), for which parallel programs have shown
great success. Accordingly, the present disclosure involves
techniques to implement and optimize parallel algorithms
for computing 2-BSs on modern Graphics Processing Units
(GPUs).

By providing massive computing power and high
memory bandwidth, GPUs have become an integrated part
of many high-performance computing (HPC) systems.
Originally designed for graphics processing, the popularity
of general-purpose computing on GPUs (GPGPU) has
boosted in recent years with the development of software
frameworks such as Compute unified device architecture
(CUDA) and Open Computing Language (OpenCL). Due to
the compute-intensive nature of 2-BS problems and the fact
that the main body of computations can be done in a parallel
manner for most 2-BSs, GPUs stand out as desirable plat-
form for implementing 2-BS algorithms.

However, there are few GPU algorithms, and for only a
few 2-BS problems. In addition to the lack of GPU
approaches, existing work lacks a comprehensive study of
the techniques to achieve high performance on GPUs. This
is a non-trivial task because code optimization has to con-
sider architectural and system software features of modern
GPUs that are more complex than those in multi-core CPUs.
As a result, traditional approaches to parallel computing
often fall short in delivering the best possible performance.
Accordingly, various embodiments of the present disclosure
involve techniques to decompose 2-BS problems and meth-
ods for effective use of computing resources on GPUs.
These techniques include warp-level privatization, warp-
level load balancing, and shuffle-enhanced tiling. In the
following discussion, a general description of the system
and its components is provided, followed by a discussion of
the operation of the same.
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To begin, there are at least two phases in computing
typical 2-BS problems: a pairwise data processing phase,
and a result outputting phase. In the first phase, various tiling
methods and use of different types of GPU cache to reduce
data access latency on global memory can be used. For the
output phase, privatization and summation of output can be
used to reduce synchronization. As a result, the design of
highly-optimized 2-BS algorithms that significantly outper-
form the best known GPU and CPU implementations can be
achieved.

In addition, it is noted that configuration of run-time
parameters for the GPU programs has significant effects on
performance. For that, analytical models that guide towards
the best choices of key parameters of our program are
disclosed. These analytical models allow for performance
guarantees when implementing 2-BS algorithms.

The basic algorithm design can also be extended to the
scenarios of input data being larger than global memory and
utilization of multiple GPUs towards high scalability. This
involves splitting the input into small blocks and pipelining
data transmission with in-core computation.

Although the 2-BS problems considered share the same
core computations, each 2-BS problem however carries its
own characteristics that calls for different strategies in code
optimization. For that, a software framework is provided
that allows for computing a large group of problems that
show similar data access and computational features as those
found in typical 2-BSs. In this framework, core computa-
tional kernels are implemented and output optimized GPU
code is developed based on a few parameters and a distance
function given by a user.

As mentioned earlier, a 2-BS is referred to as a compu-
tational pattern that evaluates all pairs of points among an
N-point dataset. This computation pattern can be done either
within a single dataset, or between two datasets. For every
pair of data points, a 2-BS computes a distance function
between the pair. By iterating over all of the pairs, the
problem can be solved with total complexity O(N?).

The 2-BS type of functions are found popular in many
scientific domains, with numerous concrete examples. The
following are names of 2-BS that compute all pairs of points
within a single dataset: 2-tuple problem, all-point nearest-
neighbor problem, pairwise comparisons for time series
motifs, nonparametric outlier detection and denoising, ker-
nel density regression, two-point angular correlation func-
tion, 2-point correlation function, and spatial distance his-
togram (SDH), to name a few. Another flavor of 2-Body
statistic takes two different datasets as input, examples
include Radial distribution function (RDF) and relational
joins. However, there are many other types of 2-BS prob-
lems beyond these examples.

In practice, there are many applications of 2-BS problems.
A common practice in many application domains is to use
various distance measures (e.g., Euclidean, Jaccard, and
cosine distance) to find the similarity of all pairs of input
datum. One example is recommendation systems for online
advertising that predict the interest of customers and sug-
gests correct items. Another example is a music predictive
model based on pairwise comparisons of Gaussian process
priors between music pieces. There are two types of recom-
mendation systems: content-based filtering (CB) and collab-
orative filtering (CF). Both require 2-BS computation: CB
depends on pairwise comparisons between items and CF
depends on those between users.

A straightforward GPU algorithm for computing 2-BS is
shown as Algorithm 1, which is reflected by the following
pseudocode:

—
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4

Algorithm 1: Generic CPU-based 2-BS algorithm

Local Vat: t (Thread id)
1: currentPt < input[t]
2:fori=t+1toNdo
3: d < DisFunction(currentPt, input[i])
4:  update output with d
5: end for

Note the pseudocode is written from the perspective of a
single thread, reflecting the Single-Program-Multiple-Data
(SPMD) programming style of some GPGPU programming
frameworks. Each thread loads one datum to a local vari-
able, and uses that to loop through the input dataset to find
other data points for the distance function computation. The
output will be updated with the results of each distance
function computation.

To optimize the above 2-BS algorithm, the challenges can
be roughly summarized as those in dealing with the input
and output data, respectively. First, each input datum i will
be read many times (by different threads into registers) for
the distance function computation. Therefore, the strategy is
to push the input data into the cache as much as we can. The
many types of cache in GPUs, however, complicates the
problem. Second, every thread needs to read and update the
output data at the same time. Updating the output data
simultaneously might cause incorrect results. Some recent
GPUs and GPGPU software frameworks provide atomic
instructions to ensure correctness under concurrent access to
global and shared memory locations. However, an atomic
instruction also means sequential access to the protected
data lowers performance. As a result, collisions should be
avoided as much as possible.

2-BS cases can be characterized based on the computa-
tional paths. This helps to determine the proper combination
of techniques to use for optimizing individual 2-BS prob-
lems. For example, many 2-BS problems are very similar at
the point-to-point distance function computation stage.
However, members of the 2-BS family tend to have very
different patterns in the data output stage. However, there are
at least three types of 2-BS problems.

Type-I:

2-BS members of this group generate a very small amount
of output data from each thread. These output must be small
enough to be placed in registers for each thread. For
example, 2-point correlation function, which is fundamental
in astrophysics and biology, outputs a number of pairs of
points that determine correlation in dataset. Other examples
are all-point k-nearest neighbors (when k is small) and
Kernel density/regression, which output classification
results or approximation numbers from regression.

Type-II:

The output of 2-BS members in this group is too big for
registers, but still small enough to be put into a GPUs’
shared memory. Examples include: (1) Spatial distance
histogram (SDH), which outputs a histogram of distances
between all pairs of points; and (2) Radial distribution
function (RDF), which outputs a normalized form of SDH.

Type-III:

In this group, the size of the output of 2-BS problems can
be so large that the output can only be put into global
memory. In some extreme cases, the size of the output is
quadratic to the size of input. Some examples are: (1)
relational join, which outputs concatenated tuples from two
tables-total number of output tuples can be quadratic (espe-
cially in non-equality joins); (2) Pairwise Statistical Signifi-
cance, which is statistical significance of pairwise alignment
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between two datasets and generates large output; and (3)
Kernel methods which compute kernel functions for all pairs
of data in the feature space.

To elaborate on the GPU algorithm design, the data
structures for loading input data should be considered. First
of all, the input data is stored in the form of multiple arrays
of single-dimension values instead of using an array of
structures that each holds a multi-dimensional data point.
This will ensure coalesced memory access when loading the
input data. Moreover, each dimension array can be vector-
ized by loading multiple floating point coordinate values in
one data transmission unit. In particular embodiment, one
can use the float2, float3, and float4 data types supported in
CUDA for such purposes. This reduces the number of
memory transactions and thus the number of load instruc-
tions in code. Furthermore, vectorized memory access also
indirectly increases instruction level parallelism (ILP) by
unrolling a loop to calculate all pairwise distances between
two vectors. Thus, in the remainder of this paper, a datum
means a vector of multiple data points. Also a distance
function call between two datum actually computes all
pairwise distances.

As mentioned above, GPGPU frameworks often support
a number of vector floating point data types to store multiple
floating point values simultaneously. In general, a wider
vector yields higher memory bandwidth utilization, but also
increases register use in the kernel, which in turn reduces
warp occupancy. Therefore, an appropriate balance point
between register usage and memory bandwidth should be
considered.

There are a number of design strategies in the pairwise
distance function computation stage. The input data is stored
in the form of multiple arrays of single-dimension values
instead of using an array of structures that each holds a
multi-dimensional data point. Moreover, each dimension
array can be vectorized by a vector of two elements. This can
cause memory access to be coalesced when loading the input
data. While naive approaches (e.g., as outlined in Algorithm
1 above) may load one input to the distance function from
the global memory, there are O(N?) total distance calls. Due
to the high latency of data transferring between the global
memory and cores, the goal is to reduce the number of data
reads from global memory. In particular, a tiling method
may be used to load data from the global memory to on-chip
cache. Whenever two data points are used as inputs to the
distance function, they are retrieved from cache instead of
the global memory.

FIG. 1 illustrates the tiling approach. Input data is divided
into small blocks, and the size of a block ensures it can be
put into cache. Normally, the data block size is the same as
the number of threads in each block. Each thread loads one
vector of input data into the cache to ensure coalesced access
to the global memory. With blocks of data loaded to cache,
the main operation of the algorithm is now to compute
distance function between two different blocks of data
(inter-block computation). Each thread block first loads an
anchor block L, and loads a series of other blocks R. Then,
distance functions between all pairs of datum of inter and
intra blocks are computed. Algorithm 2 shows the pseudo
code for an implementation of the tiling-based algorithm.

Algorithm 2: Block-based 2-BS computation

Local Var: t (Thread id), b (Block id)

Global Var: B (Block size), M (total number of blocks)
1: L < the b-th input data block loaded to cache
2:fori=b+1toMdo

10

20

25

30

35

40

45

50

55

60

65

6

-continued

Algorithm 2: Block-based 2-BS computation

R < the i-th input data block loaded to cache
syncthreads( )
forj=0to Bdo
d < DisFunction(L[t], R[j])
update output with d
end for
end for
fori=t+1toBdo
11:  d < DisFunction(L[t], L[i])
12:  update output with d
13: end for

LRk

10:

To implement the above algorithm, a decision needs to be
made: which cache is used to hold both blocks L and R?
There is no straightforward answer since there are multiple
cache systems in the GPUs provided by various vendors. By
ignoring the non-programmable .2 cache, there is still the
programmable shared memory and read-only data cache
(RoC), both of which may have Terabyte-per-second (TBps)
level bandwidth and a response time of just a few clock
cycles. As programmable shared memory tends to have the
lowest latency in GPUs (e.g., about 21 clock cycles in
NVIDIA’s MAXWELL® architecture), the shared memory
may be sufficient to use to hold both blocks L. and R. For
purposes of the subsequent discussion, this technique is
referred to as “LRshm.”

By taking a closer look at Algorithm 2, one can notice that
each datum will have to be placed into registers before it can
be accessed by the distance function, and each thread only
accesses a particular datum throughout its lifetime. There-
fore, it is more efficient by defining a local variable for each
data member of block L, which can be stored and accessed
in registers. This will reduce the consumption of shared
memory in each thread, which is a bottlenecking resource in
implementations with a large data output. An addition ben-
efit of using variables that can be stored in registers is the
reduction in the latency of accessing the variable. In some
hardware implementations, the latency of accessing registers
is just one clock cycle. However, the same argument does
not hold true for block R: all data in block R is meant to be
accessed by all threads in the block but a register is private
to each thread. Therefore, block R has to be loaded into
cache. Accordingly, another technique, named Register-
SHM, can be used to improve LRshm by using registers to
hold one datum from block L, and allocating shared memory
to hold block R.

Another solution that further relieves the bottleneck of
shared memory by storing the block in RoC can be used.
Although this solution may not yield higher performance in
the distance computation stage, it is meaningful if shared
memory has to be used for other demanding operations (e.g.,
outputting results). This solution basically does not change
the code structure of the second solution (with use of
registers). However, the RoC can be used instead of shared
memory to store blocks R (for inter-block computation) and
L (for intra-block computation). RoC has higher latency than
the shared memory (e.g., about 64 clock cycles higher in
NVIDIA MAXWELL) but it is still an order of magnitude
faster than global memory. However, RoC is not fully
programmable as the shared memory. To address this issue,
the variable can be stored into the RoC.

Analytical Evaluation:

In order to robustly compare the performance of the
proposed algorithms, we present an analytical model of the
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number of accesses to different types of GPU memories
during the execution of these algorithms. The Naive algo-
rithm does not benefit from shared memory and RoC, and
just uses global memory. The number of accesses to global
memory for this algorithm is:

N+Z_ MY NV-) (6]

Since each access costs the highest latency compared to
other memory on GPU, this algorithm is very costly. How-
ever, other improved algorithms take advantage of faster
cache and yield better performance. SHM-SHM and Reg-
ister-SHM both use shared memory plus global memory, and
Register-RoC uses RoC and global memory. These three
mentioned algorithms have the same number of accesses to
global memory, which equals to:

N+Z_ MY M-1)B )

Having the same number of accesses to global memory,
we should consider other memory accesses for the sake of
comparison. In SHM-SHM algorithm, number of accesses to
shared memory is:

23, MY M-)B222 . BN B-DM 3)

In Register-SHM algorithm, the number of accesses to
shared memory is:

> MU M- B2 23, BYB-i)M

Considering the number of accesses to shared memory by
SHM-SHM and Register-SHM algorithms, the Register-
SHM decreased the number accesses quite considerably,
dropping by half from SHM-SHM, which is why it is faster
than SHM-SHM. On the other hand, the Register-RoC
algorithm exploits data cache instead of shared memory and
the number of accesses to this memory is the same as the
number of accesses of Register-SHM to share memory.
Considering corresponding access time of each GPU
memory and the number of accesses to that memory by each
algorithm, it’s clear that Register-SHM outperforms the
others.

Empirical Evaluation:

To evaluate the performance of the aforementioned solu-
tions in distance computation, they were implemented in
CUDA and experimented using synthetic data with different
sizes. In particular, CUDA kernels were implemented to
compute a Type-I 2-BS: the 2-point correlation function
(2-PCF). The 2-PCF requires computation of all pairwise
Euclidean distances and the output is of very small size: one
scalar describing the number of points within a radius. The
2-PCF is a good example here because the work is almost
exclusively on the distance computation. The experiments
were run in a workstation running Linux (Ubuntu 14.04
LTS) with an Intel Xeon CPU E5-2620 v3, 64 GB of DDR3
1333-MHz memory and an NVIDIA TITAN® XP GPU with
12 GB of global memory. This workstation is also the
platform used for other experiments reported throughout this
disclosure. The following kernel functions were imple-
mented and compared to the different solutions mentioned
above: (1) SHM-SHM: caching both blocks [ and R in
shared memory; (2) Register-SHM: caching one datum in
register and block R in shared memory; (3) Register-RoC:
placing one datum in register and block R in read-only
cache; and we also compare with (4) Naive: generic GPU-
Based 2-BS algorithm as shown in Algorithm 1. Note that all
of the kernels except Naive kernel, the input variable is
vectorized by float2. In addition, the naive kernel is com-
piled by —Xptxa-dlem=ca flag, which enabled compiler to
use L1 cache.

10

15

20

25

30

35

40

45

50

55

60

65

8

Experiments were performed on input data size ranging
from 512 to 3 million particles. Particle coordinates are
generated following a uniform distribution in a region. For
kernel parameters, the total number of threads was set as the
data size and the value of threads per block to 512, which is
derived from an optimization model. The model guarantees
best kernel performance among all possible parameters by
minimize running round (e.g., number of round all the
specified threads of a kernel are actually scheduled). The
model also shows that running round is limited by three
factor—that are shared memory usage, register usage, and
number of concurrent warp. Because the kernel in 2-PCF
uses small amount of these three factor, large block sizes of
the kernel (e.g., 512 thread per block) can be used to achieve
the best performance.

FIG. 2 shows the total running time of each experimental
run. It is observed that the running time grows with data size
in a quadratic manner, which is consistent with the O(N?)
complexity of such algorithms. Among all tested parallel
algorithms, the Register-SHM and the SHM-SHM kernel
shows similar results, which is the best performance under
all data sizes—it achieves an average speedup of 3.9x
(maximum speedup of 3.5x). The Register-RoC kernel
shows the least improvement over the naive algorithm, with
an average speedup of 3.3x and maximum speedup of 3.7x.
The results are in conformity with the proposed caching
solutions.

To evaluate the level of optimization achieved, the utili-
zation of GPU resources was analyzed. Normally, the bottle-
neck is on the memory bandwidth in processing 2-BSs such
as the 2-PCF, due to the simple calculations in the distance
function. If the cores can be fed with sufficient data, the
cores will show a high utilization, which indicates the code
is highly optimized. Another way to look at it is that since
the total number of distance function calls is the same for all
algorithms mentioned thus far, the less idling time the cores
experience, the better performance the algorithm has. Table
2 shows utilization of different hardware units.

TABLE 2
GPU Cores Memory Bandwidth
Kernel Ari Con Mem SHM L2 ROC
Naive 20% 5% 15% 10% 90% 40%
SHM-SHM 67% 14% 4% 20% 10% 10%
Reg-SHM 68% 14% 4% 20% 10% 10%
Reg-RoC 55% 12% 12% 10% 20% 50%
Various embodiments of the present disclosure also

involve techniques to efficiently output the results from
GPUs in 2-BS computing. Depending on the features of data
output, the design strategy on this stage can be different for
various 2-BSs. The simplest type is that each thread omits a
very small amount of output (e.g., Type-I), such as simply
using automatic (local) variable(s) to store an active copy of
the output data in registers, and transmit such data back to
host when kernel exits. For problems with medium-sized
output (e.g., Type-II), shared memory can be used to cache
the output. Data privatization techniques can be used to
handle these output. For problems with very large output
size (e.g., Type-III), results have to be output directly to
global memory. The main problem for using global memory
for output is the synchronization required by supporting
different threads write into the same memory location. To
avoid incorrect results, atomic instructions are used in GPUs
to have protected accesses to (global) memory locations. In
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frameworks such as CUDA, such protected memory loca-
tion is not cached and obviously cannot be accessed in a
parallel way. Therefore, it renders very high performance
penalty to use atomic instructions when threads frequently
access the same memory address. For that, a direct output
buffer mechanism can be used to to minimize such costs.
Note that our paper focuses on 64-bit output data type.

Data privatization is frequently used in parallel algorithms
to reduce synchronization. For problems addressed by the
present disclosure, private copies of the output data structure
can be stored to be used by a subset of the threads in the
on-chip cache of GPUs. The RoC cannot be used here since
it cannot be overwritten during the lifespan of the kernel.
That leaves the shared memory the only choice. By this
design, the data output is done in two stages: (1) whenever
the distance function generates a new distance value, it is
used to update the corresponding location of the private
output data structure via an atomic write. Although this still
involves an atomic operation, the high bandwidth of shared
memory ensures minimum overhead; (2) when all distance
functions are computed, the multiple private copies of the
output array are combined to generate the final output (FIG.
3). It can be assumed that the final output can be generated
using a parallel reduction algorithm such as the one pre-
sented in CUDA thrust library. Algorithm 3 shows a new
version of Algorithm 2 enhanced by the output privatization
technique.

Algorithm 3: SDH with Output Privatization

Local Var: t (Thread id), b (Block id)

Global Var: B (Block size), M (total number of blocks)
1: SHMOut < Initialize shared memory to zero

2: reg < the t-th datum of b-th input data block
3:fori=b+1toMdo

4: R < the i-th input data block loaded to cache
5:  syncthreads( )

6: forj=0toBdo

7 d < DisFunction(reg, R[j])

8 atomicAdd(SHMOut[d] , 1)

9: end for

: end for

: L < the b-th input data block loaded to cache
:fori=t+1toBdo

d < DisFunction(reg, L[i])
atomicAdd(SHMOut[d] , 1)

: end for

: syncthreads( )

: Output[b][t] < SHMOut[t]

In an initial implementation, one private copy of the
output for each thread block was used. By this, synchroni-
zation only happens within a thread block, and the band-
width of the shared memory can effectively hide the perfor-
mance overhead. In the output reduction phase, private
outputs on shared memory are first copied (in parallel) to
global memory, which is in global scope and can be accessed
by other kernels. Then a reduction kernel is launched to
combine the results into a final version of output array. This
kernel is configured to have one thread handle one element
in the output array.

Here an analytical model of the performance during the
process of output writing is also presented. The cost in the
naive algorithm is N°C,,_. Because the latency C,,. is
high, the naive algorithm is heavily bound by the time of
writing output. In the privatization-based algorithm, there
are two stages in output writing: the update stage and
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reduction stage. In the update stage, the cost of memory
access is:

S MVEB=1)C e )]

and that in the reduction stage is:

H[M(CoptCamrtCor+Conl (6)

Via the privatization technique, the number of accesses to
global memory drops significantly from the naive algorithm.
Specifically, the naive algorithm needs to access global
memory every time a result is generated from pairwise
computation, but privatization requires access only in the
reduction stage. Such a number decreases from N2 to
H [2M+1]. Reading and writing to global memory without
atomic instructions occurs in the reduction stage. In addi-
tion, the atomic writes are done in shared memory, which
bears a much lower overhead. Therefore, writing private
outputs can significantly outperform the naive algorithm.

So a privatization method in which one private copy of the
output is used per thread block has been presented. Note that
synchronization still exists when different threads in the
block write into the same output address. If the output size
is small enough to allow multiple private copies for the same
block of threads, the probability of collision in atomic
operations will decrease, leading to better efficiency of
parallelization. To realize this, there are two problems to
solve: (1) how to assign threads (within a block) to the
multiple private copies; and (2) how to determine the exact
number of required copies.

As to the first problem, it is natural to assign threads with
continuous thread IDs to a copy of temporary output. For
example, with two private copies in each threads block of
size B, threads with IDs in [0,B/2) share the first copy and
those with IDs in [B/2,B) access the second copy. However,
this approach does not further improve the performance of
the kernel. This is due to the run-time thread scheduling
policy in GPGPU frameworks. For example, in CUDA,
every 32 threads with consecutive IDs (called a warp) is the
basic scheduling unit. In other words, only threads in the
same warp are guaranteed to run at the same time thus face
the penalty of collision due to atomic operations. Threads in
different warps do not suffer from this issue; thus, assigning
them to different output copies does not help. Therefore, one
approach is to assign threads with the same offset of IDs in
the warp to an output copy. Going back to the previous
example, threads can be assigned with even-numbered 1Ds
in all warps to share the first output copy and those with
odd-numbered IDs to the second copy. Algorithm 4 show
details of this enhanced method: each private output is
shared by threads whose 1Ds have the same 5 least signifi-
cant bits (called lanelD). Upon completing a distance com-
putation, each thread updates its corresponding copy of the
output (line 5).

Algorithm 4: 2-BS with Advanced Output Privatization

Local Var: t (Thread id), b (Block id), | (lane id)

Global Var: H;,. (Output size), H,,,,,, (number of private
copies)

: laneID =t & Ox1f

: initial Output

: for each pair of pairwise computation do

x <2-BS Computation Stage

atomic update Output[H_,, * (laneID%H

: end for

: Output Reduction Stage

size waam) + %]
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The second problem (e.g., finding the best number of
private outputs per block) is non-trivial: more copies will
decrease the chance of collision in atomic writes, but may
decrease the number of threads running simultaneously due
to the limited size of shared memory. Starting with the
following performance model for compute-intensive ker-
nels:

T @]
= [m]

where R is the number of rounds that takes to schedule all
thread blocks in the hardware, T=MxB is the total number
of threads, . is the number of threads that can be run in each
round in a single multiprocessor (a.k.a. thread occupancy),
and M,, is the total number of multiprocessors in a GPU.
Note that frameworks such as CUDA allow a large number
of blocks to be launched yet there are only a small number
of (e.g., 30 in a Titan XP) multiprocessors in a GPU device.
Thus, the number of rounds is obviously determined by the
occupancy, as all other quantities in Equation 7 are con-
stants. The occupancy, in turn, is affected by the use of
common resources for each block, which in in this case is
shared memory and is determined by the number of private
output copies. The occupancy calculated from the model is
plotted in FIG. 4. As illustrated, kernel occupancy drops
dramatically with the increase of number of copies and
output size. Based on such results, an analytical model can
be developed.

Letting L be the latency of running a single round, RxL
is then the total kernel running time. In this case, latency is
dominated by the time each thread idles due to the conflict
of atomic operations. Let k denote the number of threads
sharing the same private output in a warp (thus causing a
conflict), latency can be then defined as a function of k

Cr k=1
pCr+(L=p)P k>1

8
Lk, Cp) ={ ®

Specifically, if each thread in a warp has its own private
output (k=1), there should be no conflict. The latency is
denoted under this (ideal) situation as C;. If multiple threads
share a private output, latency is determined by the prob-
ability of seeing a collision-free warp (p,) and a penalty of
collision P, which can be defined as

P=L(k-1,C1+Cpp) ©)

In other words, L becomes a recursive function defined over
a higher latency time C,+C; , and fewer conflicting threads
k-1. Again, p, is the probability that all threads in the same
warp access different address locations in the outputs. This
can be modeled as a classic birthday problem, resulting in:

H¢—-1 Hg-2 Hg-3 (10)
= X X X

Hg Hg Hg

Hg—(k-1)
X
Hg

Pr

This says that the first thread can update any address, the
second thread can update any address except the first
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thread’s output address, and so on. By using Taylor series
expansion of ex, the expression approximates to:

—k(k—1)

(1n
P =€

FIG. 4 also shows latency derived from our model under
various values of k and H. Note that the latency data plotted
here is of unit C; instead of absolute time in seconds. Here
C, is a hardware-specific value that can be obtained via
experiments. As shown, the latency decreases when there are
more private copies of outputs. In case of only a single
output (1H), and when the output size is small the latency
time becomes very high. As a side note, the output size plays
a role in both sides of FIG. 4: with the increase of output
size, lower occupancy (due to higher shared memory con-
sumption) and lower latency (due to less conflict in access-
ing the output) result.

With the above model, we can find the optimal number of
private copies. Given any output size (this is a user-specified
parameter for a 2-BS problem), different values of k can be
used to solve both Equations (7) and (8) to get the estimated
total running time. Luckily, k is an integer ranging from 1 to
32 (e.g., CUDA warp size), all such k values can be
evaluated to find one that leads to the best running time.

Other techniques can be used to handle a common prob-
lem in Type-III 2-BSs: allocating GPU (global) memory for
output whose size is unknown when the kernel is launched.
The problem is due to the fact that some GPGPU frame-
works, such as CUDA, only allow memory allocation for
data with a static size. Such a problem has been a real
difficulty for not only 2-BS computation but many other
parallel computing patterns as well. A typical solution is to
run the same kernel twice—the first time is for determining
the output size only, and the memory for output is actually
allocated and updated in the second run. However, this
imposes a waste of time and other resources on the user.

A buffer management mechanism can be used to handle
unknown output size. This design only requires one single
run of the kernel, with very little synchronization among
threads. First, an output buffer pool with a fixed size is
allocated. Then, it is divided into small chunks called pages.
A global pointer GP that holds the position of the first
available page in the buffer pool is kept. Each thread starts
with one page and fills the page with output by keeping its
own pointer to empty space in that page. Once the page is
filled, the thread acquires a new page pointed to by GP via
an atomic operation. By using this mechanism, conflicts
among threads remains minimal because GP is only updated
when a page is filled. Algorithm 5 shows the 2-BS algorithm
augmented with this mechanism.

Algorithm 5: 2-BS with Direct Output Buffer

Local Var: buf (current buffer page), count (page usage)
Global Var: GP (next free page), b (Page size)

1: buf < atomicAdd(GP, b)

2: count < 0

3: for each pair of pairwise computation do

4:  x <2-BS Computation Stage
5:  bu flcount++] < x

6:  if count == b then

7: buf < atomicAdd(GP, b)
8: endif

9: end for
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The algorithm starts from initializing local buffer pointer by
using atomic add operation from global buffer pool and set
count to 0 (lines 1 and 2). Then, the algorithm adds each
update to local buffer page (line 5). If local buffer page is
filled, the algorithm requests a new page by another atomic
operation (line 7). The GP pointer, although defined in
global memory, will be most likely cached at runtime
therefore its accesses generate very little overhead.

There are also two additional techniques could help
increase the performance of 2-BS programs. The first is a
load-balancing technique. The second is a tiling technique
with shuffle instructions.

Code divergence is the situation when different threads
follow different execution paths in an SIMD architecture. As
a result, such threads will be executed in a sequential manner
and that leads to performance penalties. In CUDA, since the
basic scheduling unit is a warp (of 32 threads), only diver-
gence within a warp will be an issue. As illustrated by
Algorithm 2, the kernel will only suffer from divergence in
the intra-block distance function computation (line 10 to 13
in Algorithm 2). This is because each thread goes through a
different number of iterations. Here, a load balancing
method can be introduced to eliminate divergence from the
intra block computation. As mentioned before, divergence
occurs because the workload on each thread is different. The
load-balancing technique thus enforces each thread to com-
pute the same amount of work, e.g., half of the block size.
Previously, for a thread with index i in a block (thus i€[0,
B-1]), the total number of datum it pairs with is [B-1-i],
meaning that every thread has a different number of datum
to process, and this leads to divergence everywhere. With the
load-balancing technique, each thread can pair with B/2
datum. In particular, at iteration j, the thread with index i
pairs with datum with index (i+j) % B. Note that, in the last
iteration, only the lower half of all threads in a block needs
to compute the output. This does not cause a divergence as
the block size is a multiple of warp size.

As seen previously, tiling via shared memory or RoC is a
technique to improve performance of Type-1 2-BS programs.
However, under some circumstances, both the shared
memory and RoC may not be available for the use of 2-BS
kernels. For example, they could be used for other concur-
rent kernels as a part of a complex application. A tiling
technique with shuffle instructions can therefore be used to
relieve the dependency on cache. Note that register content
is generally regarded as private information to individual
threads. However, the shuffle instruction introduced in
recent versions of CUDA (and similar instructions in other
GPGPU frameworks) allows sharing of register content
among all threads in the same warp or similar data structure.
Therefore, Algorithm 2 can be augmented using shuffle
instructions, as illustrated in the pseudocode in Algorithm 6
below.

Algorithm 6: Block-based 2-BS with shuffle instruction

Local Var: t (Thread id), b (Block id), W (warp size)
Global Var: B (Block size), M (total number of blocks)
1: reg0 < the t-th datum of b-th input data block
2:fori=b+1toMdo
3: forj =t%W to B; j+=W do
4 regl < the j-th datum of i-th input data block
5 fork =0to W do
6: regtmp < regl broadcasted from the k-th thread
7: d < DisFunction(reg0, regtmp)
8 update output with d
9 end for
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-continued

Algorithm 6: Block-based 2-BS with shuffle instruction

10:  end for
11: end for

In particular, three registers are allocated to store input
data: reg0 (line 1) is used to store datum from L. which is the
same as algorithm 2; regl (line 4) is used to store datum
from R and changes after every 32 iterations; regtmp (line 6)
is a temporary variable, which updates every iteration with
shuffle instruction. Each thread can load a datum to regl
(line 4). Then, in each iteration, a shuffle broadcast instruc-
tion is used to load data from other thread’s register (line 6)
to regtmp. After regtmp value becomes valid, reg0 and
regtmp can be used to calculate distances (line 7). FIG. 5§
shows an example. Note that this method requires only two
more registers and does not require shared memory or
read-only cache.

So far, solutions to the 2-BS problem have been presented
assuming the GPU global memory is big enough to contain
all input data as well as program states. In fact, the 10
GB-level global memory in a typical GPU can hold input
data big enough to keep the GPU busy for a long time due
to the quadratic nature of 2-BS computing. However, it is
still meaningful to study algorithms that handle large data-
sets with sizes greater than that of the global memory.

To address large datasets with sizes greater than that of the
global memory, one can first divide the input data into small
blocks that can fit into GPU global memory, and execute the
best algorithm we have developed so far for each pair of
input data blocks sitting in global memory. The results of
each pair of data blocks are then aggregated towards com-
puting of the final result. It is well known that data trans-
mission in/out GPU carries significant overhead due to the
limited bandwidth of the PCI-E bus. In small-data algo-
rithms, the input data only needs to be shipped into the GPU
once, this translates into a linear overhead that can be
overshadowed by the quadratic on-board computational
time. With the large data inputs, every pair of data blocks
will have to be transmitted to the GPU. If the data has to be
partitioned into k blocks, we essentially have to ship O(k?)
pairs of blocks. Therefore, an optimization goal here is to
reduce the data shipping overhead.

The strategy is to hide the data transmission latency
behind the GPU processing of the in situ data blocks. In
CUDA, data transmission in/out of GPU is asynchronous
therefore execution of concurrent kernels allows data trans-
mission and in-core computation to be done at the same
time. The mechanism for concurrent kernel execution is
called CUDA Streams: a CUDA stream is basically a series
of GPU operations (e.g., [/O, kernel execution) that have to
follow a fixed order. However, kernels belonging to different
CUDA streams can be executed concurrently: when input
data is being transmitted in Stream 1, the 2-BS kernel in
Stream 2 can run. For each pair of input data blocks, if the
kernel running time is longer than data transmission time,
the latter can be effectively hidden.

Apart from allowing 2-BS to be computed for large data
inputs, the above approach provides an effective way to
scale up the algorithm. Since all pairs of input data blocks
can be processed independently, our method can be easily
applied to a multi-GPU environment, in which each GPU
can work on a different set of input data blocks.

A special note here is: the way to combine outputs from
different block-level runs depends on the type of 2-BS. For
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Type-1 and Type-II, the results can be combined inside each
GPU via parallel reduction when any pair of data blocks are
processed. For Type-III, due to the use of direct output
buffer, no action is needed to combine output within the
GPU. To handle new chunks output, threads just require to
acquire a new page from the Global Pointer. After GPU
devices complete computation of all data blocks, they trans-
fer output back to the host. At the end, the host combines all
device-level outputs into the final output.

While there are a number of techniques to optimize 2-BS
code on GPUs according to various embodiments of the
present disclosure, different techniques are effective at dif-
ferent stages of different 2-BS problems. For those with new
2-BS problems with arbitrary characteristics, development
of efficient code is still challenging. Accordingly, some
embodiments of the present disclosure can involve a frame-
work that encapsulates all aforementioned techniques and
automatically generates optimized GPU code for user-de-
fined 2-BS problems. To develop code for a new 2-BS
problem, the framework uses at least the following inputs:
(1) a distance function; (2) information about the type,
number of dimensions of the input data and the number (1
or 2) of input datasets; (3) an output data structure and its
(estimated) size; and (4) specifications of the target GPU
device. Based on such information, the framework can
outputs almost complete CUDA kernels that reflect the
optimized strategy for computing the given 2-BS. In some
embodiments, the framework can also output code for other
GPGPU frameworks.

The disclosed framework stores chunks of template code
reflecting the individual techniques mentioned above as well
as the models developed for kernel optimization. In addition,
a rule-based engine that integrates different chunks of code
into executable CUDA kernels can be used. For example,
some components of the rule-based engine are about deci-
sion-making with the different sizes of the output data. This
can be seen as a decision tree in FIG. 6. If output size is tiny
or equal to a threshold a (e.g., Type-I), the code will be
generated based on caching inputs into shared memory and
outputs into registers. Otherwise, if output size is larger than
a threshold value or unknown (e.g., Type-III), the code will
cache inputs in shared memory and use a direct buffer to
handle output. For Type-II problems, the framework will
check available RoC size. If there is enough RoC to hold
input data, RoC will be used as input cache. Otherwise,
shufle instructions will be used for caching input data. Then
the output size is checked again, if output size is greater than
a threshold v, regular output privatization will be used.
Otherwise, warp-level output privatization will be used. The
thresholds are set as follows: set o to the size of the largest
primitive type (e.g., float4, int4) supported by the GPGPU
framework (e.g., CUDA). This is because anything larger
than that (e.g., an array) will be placed in global memory.
Then set §§ to the size of shared memory (e.g., 64K for
PASCAL architectures). v is given by the modeling results
shown in Table 4, reproduced below:

TABLE 4

Number of private copies H and the range of output
size for which H is found to be the optimal choice

Number of copies Theoretical Results Actual Results

32 1-10 1-10

16 11-50 11-35
8 31-65 36-92
4 66-150 93-152
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TABLE 4-continued

Number of private copies H and the range of output
size for which H is found to be the optimal choice

Number of copies Theoretical Results Actual Results

2 151-450
1 >450

153-300
>300

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, is otherwise
understood with the context as used in general to present that
an item, term, etc., may be either X, Y, or Z, or any
combination thereof (e.g., X, Y, or Z). Thus, such disjunctive
language is not generally intended to, and should not, imply
that certain embodiments require at least one of X, at least
one of Y, or at least one of Z to each be present.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
and modifications may be made to the above-described
embodiments without departing substantially from the spirit
and principles of the disclosure. All such modifications and
variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

Therefore, the following is claimed:
1. A system for solving two-body statistics (2-BS) prob-
lems with a graphics processing unit (GPU), comprising:
a main memory and the GPU;
machine readable instructions stored in the main memory
that, when executed by the GPU, cause the system to at
least:
load a first input data block from the main memory into
a first cache region of the GPU, the first input data
block comprising a first array of values;
load a second input data block from the main memory
into a second cache region of the GPU, the second
input data block comprising a second array of values;
compute a first distance function between each value in
the first data block and each value in the second data
block;
load a third input data block from the main memory
into a third cache region, the third input block
comprising a third array of values; and
concurrently compute:

the first distance function between each value in the
first data block and each value in the second data
block;

a second distance function between each value in the
first data block and each value in the third data
block;

allocate a buffer in the memory;

divide the buffer into a plurality of pages;

assign a first one of the plurality of pages to a first
thread that computes the first distance function;

assign a second one of the plurality of pages to a second
thread that computes the second distance function;

initialize a global pointer that references a position of
the first available page of the plurality of pages;

in response to the first thread filling the first one of the
plurality of pages with output from the first distance
function or in response to the second thread filling
the second one of the plurality of pages with output
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from the second distance function, assign the first
available page to a respective one of the first thread
or the second thread; and

update the global pointer to reference a position of the
second available page of the plurality of pages.

2. The system of claim 1, wherein the machine readable
instructions the compute first the distance function between
each value in the first data block and each value in the
second data block further cause the system to at least:

load a value from the first array of values into a register

of the GPU; and

compute first distance function between the value in the

register of the GPU and each value in the second data
block.

3. The system of claim 1, wherein the first distance
function is provided as an input to the machine readable
instructions.

4. The system of claim 1, wherein the first input data
block is selected from a first data set and the second input
data block is selected from a second data set.

5. A method for solving two-body statistics (2-BS) prob-
lems with a graphics processing unit (GPU), comprising:

loading a first input data block from the main memory into

a first cache region of the GPU, the first input data
block comprising a first array of values;
loading a second input data block from the main memory
into a second cache region of the GPU, the second input
data block comprising a second array of values;

computing a first distance function between each value in
the first data block and each value in the second data
block,

loading a third input data block from the main memory

into a third cache region, the third input block com-
prising a third array of values;

concurrently computing:

the first distance function between each value in the
first data block and each value in the second data
block;
a second distance function between each value in the
first data block and each value in the third data block;
allocating a buffer in the memory;

dividing the buffer into a plurality of pages;

assigning a first one of the plurality of pages to a first

thread that computes the first distance function;

assigning a second one of the plurality of pages to a

second thread that computes the second distance func-
tion;

initializing a global pointer that references a position of

the first available page of the plurality of pages;

in response to the first thread filling the first one of the

plurality of pages with output from the first distance
function or in response to the second thread filling the
second one of the plurality of pages with output from
the second distance function, assigning the first avail-
able page to a respective one of the first thread or the
second thread; and

updating the global pointer to reference a position of the

second available page of the plurality of pages.

6. The method of claim 5, wherein computing the first
distance function between each value in the first data block
and each value in the second data block further comprises:

loading a value from the first array of values into a register

of the GPU; and

computing the distance function between the value in the

register of the GPU and each value in the second data
block.
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7. The method of claim 5, further comprising receiving
the first distance function as an input provided by a user.

8. The method of claim 5, wherein the first input data
block is selected from a first data set and the second input
data block is selected from a second data set.

9. A non-transitory, computer-readable medium compris-
ing a machine-readable instructions that, when executed by
a processor of a computing device, cause the computing
device to at least:

load a first input data block from the main memory into

a first cache region of a Graphics Processing Unit

(GPU), the first input data block comprising a first array

of values;

load a second input data block from the main memory into

a second cache region of the GPU, the second input

data block comprising a second array of values;

compute a first distance function between each value in
the first data block and each value in the second data
block,

load a third input data block from the main memory into

a third cache region, the third input block comprising a

third array of values;

concurrently compute:

the first distance function between each value in the
first data block and each value in the second data
block;

a second distance function between each value in the
first data block and each value in the third data block
allocate a buffer in the memory;

divide the buffer into a plurality of pages;

assign a first one of the plurality of pages to a first thread

that computes the first distance function;

assign a second one of the plurality of pages to a second

thread that computes the second distance function;

initialize a global pointer that references a position of the
first available page of the plurality of pages;

in response to the first thread filling the first one of the

plurality of pages with output from the first distance
function or in response to the second thread filling the
second one of the plurality of pages with output from
the second distance function, assign the first available
page to a respective one of the first thread or the second
thread; and

update the global pointer to reference a position of the

second available page of the plurality of pages.

10. The non-transitory, computer-readable medium of
claim 9, wherein the machine-readable instructions that
cause the computing device to compute the first distance
function between each value in the first data block and each
value in the second data block further cause the computing
device to at least:

load a value from the first array of values into a register

of the GPU; and

compute the first distance function between the value in

the register of the GPU and each value in the second

data block.

11. The non-transitory, computer-readable medium of
claim 9, wherein the machine-readable instructions further
cause the computing device to receive the first distance
function as an input provided by a user.

12. The non-transitory, computer-readable medium of
claim 9, wherein the first input data block is selected from
a first data set and the second input data block is selected
from a second data set.
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