
CONTACT NAME

Napath Pitaksirianan: napath@mail.usf.edu
POSTER

P21987

CATEGORY: PERFORMANCE OPTIMIZATION & PROFILING - 06

Experimental Result

Parallel Index-based Search Operation for Database Systems via GPUs
Napath Pitaksirianan, and Yi-Cheng Tu

Department of Computer Science and Engineering, University of South Florida

Abstract
Concurrently handle a large number of queries is a crucial
characteristic of today’s in-memory database system. By
supporting such characteristics, index structure becomes a vital
role in a database system. In recent years, GPUs have become
the leading hardware for parallel computing. The unique
architecture of high-performance computation, however,
provides abundant opportunities for optimizing the algorithm
towards better performance and achieving high utilization of
GPU resources. This work presents our recent study in
designing and optimizing parallel algorithms for index-search on
Graphics Processing Units (GPUs). We present techniques to
optimize the search operation on both equality and range
searches by using a novel clustering technique that can
maximize the utilization of an on-chip GPU cache system. To
evaluate our index structure, we compare the searching time
with the best CPU SIMI index-based searching.

Equality Search Query
• The algorithm takes search keys

and return key-pairs.
• By supporting a large number of

queries, there is a high chance
that multiple queries access
to neighboring data.

• Grouping similar queries as one
block and assign into a CUDA
block can boost the performance.

• For example, Q1, Q3 access to median data, and Q2
accesses to high number datum. By grouping Q1 and Q2, the
system can achieve high utilization of cache because of
access to similar data from the cache system.

• We introduced “radix grouping operation” which group the
queries by similarity inside bits level.

Index Structure
• Handling a large volume of analytical workloads is a

significant challenge in today’s data management
applications, online analytical processing (OLAP), and data
warehouse.

• The state-of-art moves forward the performance of a
searching operation by using an Index-based search.

• There are many types of index structure which uses in index-
based searching, such as Binary tree, Red-black Tree,
QuadTree, OctTree, K-D Tree, B Tree, B+ Tree.

• B+ Tree is the most common data structures for index
searching in a database system, due to original designs for a
system with small memory and large hard disk.

• B+ tree manages data on a page, which leaf nodes are
connected as a list. This allows fast range search operation.

• In this work, we use our dynamic allocator to construct the
index structure on GPUs.

• Environment Setup
• CPU i9-7920X CPU @ 2.90GHz
• 128GB of DDR4 2444-MHz memory
• Nvidia Titan RTX GPU with 24GB of global memory.
• End to End time comparison (I/O time included) to best

SIMD CPU in [1].

• Equality Search Experiment
• Experiment data are 100

to 900 millions queries.
• The speed up is 7.4 time

over SIMD CPU code.

Range Search Query
• The operation takes two inputs; starting key and ending key.
• The operation returns a matching key in the range of starting

key and ending key.
• Range search requires a unique method to group the queries.
• The grouping operation requires to know both the starting

point and ending point.
• We present “advance radix grouping operation” which

analyzes partial bits from the starting key and the ending key.

• Group Size Experiment
• Experiment kernel running time on different group size
• Experiment on 400 million queries.
• 50000 Queries per group show the best performance

on equality Searching and Range Searching
• Profiler reported L1 cache hit rate is up to 91% on the

best group size.

GPU Index-based Searching
• GPU index-based searching requires a large number of queries

at the same time to maximize the utilization of GPUs.
• The tradition idea which loads partial top levels of the tree cannot

maximize the utilization level of the cache system.
• In this work, we present new techniques to maximization of

GPUs on Equality Search and Range Search.
• The queries are preprocessed by grouping similar queries and

assign each group to a CUDA block can significantly improve
GPUs cache utilization.

• Our study shows that the Equality Search query and the Range
search query cannot handle in the same way to maximize the
performance.

Conclusion
• GPUs required a large number of queries to achieve high

performance.
• Clustering and grouping queries can significantly improve the

utilization of the GPU’s cache system.
• Equality Search and Range Search Query required a different

technique to cluster a similar query.
• The peak L1 hit rate is up to 91% after grouping the queries.

0
0.5

1
1.5

2
2.5

3

1 10 50 100 500 1k 5k 10k
Group Size (x1000)

Range Search Performance On
different Group Size

Grouping InnerNode LeadNode

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 10 50 100 500 1k 1.5k 2k 5k

Ti
m

e
(S

ec
on

ds
)

Group Size (x1000)

Equality Search Performance
On different Group Size

Grouping InnerNode LeafNode

0

1

2

3

4

5

6

7

8

Equality Search Range Search

Sp
ee

d
up

GPU index-based Search
Performance

• Range Search Experiment
• Experiment data are 100

to 400 millions queries.
• The speed up is 2.4 time

over SIMD CPU code.

References
[1] A. Shahvarani and H. Jacobsen. A hybrid b+-tree as solution for

in-memory indexing on CPU-GPU heterogeneous computing
platforms. SIGMOD Conference 2016, pp 1523–1538

