
3DUDOOHO�.H\ZRUG�6HDUFKLQJ�XWLOL]LQJ�D�&8'$�*38�IRU�1HWZRUN�)RUHQVLFV
�

Napath Pitaksirianan1, Noppadol Wanichworanant2*
Department of Computer Engineering, Faculty of Engineering, Mahidol University

999 Phuttamonthon 4 Road, Salaya, Nakhonpathom 73170, Thailand
Email: noppadol.wan@mahidol.ac.th*

�

$EVWUDFW�

Nowadays, there is an increasing number of
cybercrime on the Internet. Governments, businesses
and individuals are in great risk. In order to trace
back to criminals, lawful interception may be
required. However, it is a complex and computation
intensive task. The advent of Graphics Processing
Units (GPUs) can offer highly parallel computing
power with great performance at a low cost to such a
task. This paper; therefore, focus on using a GPU for
keyword searching in network traffic. The KMP skip
searching algorithm was selected as the experimental
string searching algorithm. Various parameters of
the GPU were also investigated to obtain the optimal
value for this application.

.H\� :RUGV� Cybercrime, Internet, Criminals, GPUs,
Parallel computing, KMP skip searching algorithm
�
�� ,QWURGXFWLRQ�

Nowadays, the Internet is the largest network that
connects people around the world and it has become
part of our living. People can share knowledge with
each other. Governments, businesses and individuals
depend upon it. Criminals can also use the Internet as
a channel for committing a cybercrime; hence people
on the Internet are in a great risk. Therefore, a
powerful network forensic tool is needed for
investigating criminal activities on the Internet. The
advent of Graphics Processing Units (GPUs) can
offer highly parallel computing power with a great
performance at a low cost. In this paper, a NVIDIA
CUDA was chosen as a main parallel processor in
conjunction with a traditional CPU. The KMP skip
searching algorithm was also selected as the
experimental string searching algorithm. It has high
performance capability in short keyword searching.
With the high performance algorithm and powerful
parallel computing of GPUs, parallel keyword
searching on the Internet traffic became possible.
This research investigated various parameters of a
GPU to obtain the optimal value of each parameter
for a network forensic application. The application

started with sniffing packets from the network in
multiple sessions and dispatched them to the GPU
cores along with a specified keyword. Numerous
threads in GPU cores would then search incoming
traffic for the keyword in parallel. If a session
contained the specified keyword, it would be stored
in a database for further review.

�� /LWHUDWXUH� 5HYLHZ�

��� *UDSKLFV�3URFHVVLQJ�8QLWV �

GPUs have presently been developed up to
thousands of core processors for handling complex
graphic computing. However, they can be used for
general-purpose application. GPUs are alternative
choices of high computing hardware. The CUDA or
Compute Unified Device Architecture is the NVIDIA
architecture used to manage NVIDIA GPUs.
Hongjian Li, Bing Ni, Man-Hon Wong and Kwong-
sak Leung [1] implemented the k-difference agrep
algorithm in the CUDA system for nucleotide
sequence matching and claimed that the CUDA could
minimize computing time from seconds to
milliseconds. This showed that a GPU could offer
highly parallel computing power with higher
performance than a CPU. G. Vasiliadis, M.
Polychronakis and S. Ioannidis [2] integrated the
DFA and GPUs and showed that using of hierarchical
memory in modern GPUs could reduce the overhead
of data transfer to the GPU. Jiangfeng Peng, Hu
Chen, Shaohuai Shi [3] implemented the AC string
matching algorithm with a GPU on NVIDIA Tesla
C1060 and claimed that a GPU could speedup the AC
algorithm 28 times faster than a CPU. Therefore,
GPUs are suitable for string searching tasks. Xinyan
Zha and Sartaj Sahni [4] implemented the Aho-
Corasick string matching using multiple threads on a
GPU. This research emphasized that a GPU could
speedup 9 times faster than a single-threaded string
matching on a CPU. On the other hand, multi-
threaded string-matching on the CPU can speedup 3
times faster than a single-threaded one on the CPU.
In conclusion, GPUs have advantages in multi-
threaded programming over the one on the CPUs.

179

Parallel and Distributed Computing

©ICSEC 2012, October 2012, Pattaya, Thailand

Full paper

��� $OJRULWKPV�
The algorithm used in this network forensic

system was the KMP skip searching algorithm [5].
The algorithm is a combination between the KMP
algorithm and the skip searching algorithm. This
algorithm has two steps; preprocessing and searching
process. The preprocessing process made the
preprocessing table for the searching process. A-
Ning Du, Bing-Xing Fang, Xiao-Chun Yun, Ming-
Zing HU and Xiu-Rong Zheng [6] claimed that the
skip searching algorithm was more efficient in a short
searched pattern. The combined KMP skip algorithm
would give the better performance. Additionally,
Tararat Nowsaeng, Chanokrirdee Sriwichai,
Chatchamai Sakolchai and Aunyarat Champreeda [7]
suggested that the KMP skip searching algorithm had
the best performance in short keyword searching and
it was the most suitable for network forensic
application. Panwei Cao and Suping Wu [8]
implemented a parallel KMP algorithm on MPI's
multiprocessor with high performance. This showed
that the KMP algorithm could be improved its
efficiency by making it as a parallel algorithm.

�� 5HVHDUFK�0HWKRGRORJ\�

This paper emphasized on capturing enormous
data traffic on network and subsequently employed
highly parallel computing power of a GPU for a
keyword searching on that traffic. The C++
programming language was used in the CPU
programming part and C language was used in the
CUDA programming part. These two programming
languages have advantages in low-level memory
access and execution speed. For the user interface, a
web application was developed to support in multiple
platforms. Our network forensic application was
developed on the Ubuntu Desktop 10.04. Moreover,
the g++ compiler was used to compile the CPU
program and the nvcc compiler was used to compile
the CUDA program.

Figure 1. System overview

��� 6\VWHP�2YHUYLHZ�
According to Figure 1, the system began with

capturing packets from the network and analyzed
TCP packets. After that, the system sent data to be
analyzed by a GPU with a user keyword. The GPU
would then search for the user keyword in parallel
with the KMP skip searching algorithm. If there were
a match in a packet, the system would save the entire
of session to a database. Reviewing the logs could be
done via the web interface.

The system composed of 4 main components:
CPU process, CUDA process, Control process and
Web application as shown in Figure 2. The web
application would generate an xml file contained a
user configuration and sent to the control process.
After the control process read the xml configuration
file, it would start or stop the CPU process and the
CUDA process accordingly.

Figure 2. CPU process, CUDA process, control

process and web application

����� 7KH�&38�SURFHVV�

The CPU process started with packet sniffing on
the network. After a packet was received, the process
would create a session according to the packet’s port
number, the source IP address and the destination IP
address. The sequence number of each packet was
also used to sort packets in the session. Each new
session was created as a linked-list of packets as
shown in Figure 3. When the process detected the
FIN flag in the TCP segment, it would decompress
the session payload compressed with GZIP. At this
point, the process would generate a reference number
for each session. A reference number was used to
associate the session in the CPU process and the
same session in the CUDA process. In Figure 4, the
reference number and the size of payload were used
to identify the session in the CUDA process. The 20
MB of shared memory was also allocated for each
session payload.

180

Parallel and Distributed Computing

©ICSEC 2012, October 2012, Pattaya, Thailand

Figure 3. Handle multiple sessions

After the CUDA process had finished its

searching tasks, the results would be recorded in the
shared memory. If there were a match, the CPU
process would save that session to its database.

Figure 4. Shared memory implementation

����� 7KH�&8'$�SURFHVV�

The CUDA process needed to identify the CUDA
card number. Subsequently the CUDA process would
create multiple threads for its searching task as in
Figure 5. When a session was created in the shared
memory, the CUDA process would forward a session
to threads in order to search with the KMP skip
algorithm.

Figure 5. Creating kernel on the graphic card

In the CUDA card, the CUDA thread would fetch

a specified keyword and do the preprocessing of
KMP skip searching to make a preprocessing table.
With the session data and preprocessing tables , the
CUDA threads were ready for keyword matching in
the computing core. Before a kernel (the KMP skip
searching function) was executed, the preprocessing
table and the keyword were transferred to the high
speed CUDA shared memory. The session data
would be divided into small particles as in Figure 6.

Finding the optimal particle size (data per thread) is
one of our objectives in this research. After a particle
was given to each thread in a CUDA block, the
kernel would begin searching for a specified keyword
with the KMP skip searching algorithm as in Figure
7. In order to cover the word that might be split to
different particles. A particle must contain the
overlap data of another particle by a keyword size.
After the searching process was finished, each thread
would return matched positions of a keyword in the
particle and saved them in the shared memory.

Figure 6. Separation of session data

Subsequently, the CPU process would collect the

matched positions from the kernel for each session
and recorded them to its database along with the
session data.

Figure 7. Parallel computing of a GPU

�
����� 7KH�FRQWURO�SURFHVV�

In order to control the CPU process and the
CUDA process, this process would read the XML
configuration written by the web application. After
that the control process would send a start or stop
signal to CPU process and CUDA process.

181

Parallel and Distributed Computing

©ICSEC 2012, October 2012, Pattaya, Thailand

����� 7KH�ZHE�DSSOLFDWLRQ�
The web application was used as an interface to

show logs, insert or remove keywords and start or
stop network forensic system as in Figure 8. This web
application used a database and an XML
configuration file as a medium for communicating
with the CPU and CUDA processes in our network
forensic system.

Figure 8. A control page of the web application

�� ([SHULPHQW� DQG�5HVXOWV�
�
��� ([SHULPHQW�

This research examined two important
parameters: the size of block and the data per thread.
These two parameters affected the efficiency of the
searching process. The size of block is the number of
threads in a CUDA blocks. The data per thread is the
size of partial session data for each thread. A file with
a size of 200 MB was used in our experiment. The
size of block was varied from 4 threads per block to
512 threads per block for each specified data size per
thread. The data per thread was also varied from 100
wchars (4 bytes) to 10000 wchars for each specified
block size. Our system used double NVIDA 450 GT
cards and the Intel i3 with 8 GB of memory. The
network bandwidth in the experiment was 100 Mbps.

��� 5HVXOWV�
�
����� 6L]H�RI�EORFN�

According to our experiment, the 64 threads per
block had the lowest average search time of 36.769
ms as shown in Figure 9. This indicated that the 64
threads per block were the most suitable for our
network forensic system.

Figure 9. Experimental results of average search

time for each thread per block
�
����� 'DWD�SHU�WKUHDG�

From the experiment, the results of the optimal
data per thread for each specified block size can be
shown in Table 1.

Table 1. Experimental results of the optimal data per

thread for each block size
Size of Block Average Search

Time (ms)
Optimal Data

per thread
(wchar)

4 83.95 6500
8 54.05 7800
16 38.79 7800
32 33.58 1300
64 35.79 1300
128 42.97 300
256 46.92 300
512 46.77 300

The experimental results showed that the data size

of 1300 wchars gave the lowest average search time
of 33.58 ms and 35.79 ms for the block size of 32 and
64 threads accordingly as shown in Table 1 and
Figure 10. This showed that 1300 wchars per thread
is the optimal data size for our searching task.

To conclude our experiment, we compared the
search time of the single-threaded CPU searching
task with our highly parallel multi-threaded GPU
searching task. The results showed that our CUDA
system can speed up about 28 times.

Figure 10. Experimental results of average search

time of various block size

182

Parallel and Distributed Computing

©ICSEC 2012, October 2012, Pattaya, Thailand

�� &RQFOXVLRQ�
We have developed the network forensic sys tem

as a powerful tool for supporting an investigation of
criminal activities on a network. This system can
analyze data traffic on a network by searching for
malicious keywords. The GPUs have been used to
speed up the searching process. We also investigated
the optimal value for CUDA parameters.

According to our experiment, the optimal value
for the block size on our CUDA system was 64
threads per block and the optimal value for the data
size per thread is 1300 wchars.

When the optimal value was applied for each
CUDA parameters, our network forensic system
could speed up about 28 times faster than the system
with the tradition CPU.

�� 5HIHUHQFHV�
 [1] Hongjian Li, Bing Ni, Man-Hon Wong and Kwong-

Sak Leung "A Fast CUDA Implementation of Agrep
Algorithm for Approximate Nucleotide Sequence
Matching", IEEE 9th Symposium on Application
Specific Processors (SASP), 2011, pp.74-77

[2] G. Vasiliadis, M. Polychronakis, S. Ioaanidis
"Parallelization and Characterization of Pattern
Matching using GPUs" IEEE, 2011, pp.216-255

[3] Jiangfeng Peng, Hu Chen, Shaohuai Shi
“The GPU-based string matching system in adavanced
AC algorithm” IEEE CIT 2010

[4] Xinyan Zha and Sartaj Sahni
“Multipattern String Matching On A GPU” IEEE 2011

[5] Christian C. Thierry L., and Joseph D.P. "KMP Skip
Search Algorithm; very fast sring matching algorithm
for small alphabets and long patterns", Lecture Notes in
Comoputer Science, Vol. 1448, 1998, pp.55-64

[6] A-Ning Du, Bing-Xing Fang, Xiao-Chun Yun, Ming-
Zing HU and Xiu-Rong Zheng "Comparison of string
matching algorithms: an aid to information content
security", Proceedings of the Second International
Conference on Machine Learning and Cybernetics,
Xi'an, 2-5 November 2003, pp.2996-3001

[7] Tararat Nowsaeng, Chanokrirdee Sriwichai,
Chatchamai Sakolchai and Aunyarat Champreeda,
“Parallel String Searching for Network Traffic
Filtering”. Computer Department, Faculty of
Engineering, Mahidol University 2010

[8] Panwei Cao, Suping Wu "Parallel Research on KMP
Algorithm" IEEE 2011, pp. 4252-4255

183

Parallel and Distributed Computing

©ICSEC 2012, October 2012, Pattaya, Thailand

