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Abstract : : : :
GPU database has been an active topic in academic research as well as industrial practice. However, Relational Operators in CheetahDB: Group-BylAggregates Resource Allocation Among MUItlple Kernels [
existing systems have not shown significant performance advantages over CPU-based in-memory « Sorting-based and hash-based parallel Group-By kernels « Concurrent processing of kernel is both necessary (i.e., multiple queries) and feasible

DBMSs. We argue that two main factors contributed to such difficulties: (1) the CUDA programming
model, by focusing on HPC-type workloads, requires non-trivial basic research to address the many
technical challenges in developing a DBMS system software; (2) I/0O bottleneck between host and GPU

« Optimized design using shuffle instructions and multi-run grouping method (CUDA Streams)
« Group-By supports popular data types (i.e., int, long, double float, char, etc.) Aims at optimal parameter configuration for launching kernels

offsets the performance gain of on-board query processing. « Aggregates (count, average, sum, min, and max) are integrated along with * |dentify the GPU resources that related to execute multi-queries concurrently
CheetahDB is a high-performance in-memory DBMS generated from NSF-supported research at Group-By kernels for more efficient 1/0 « Formulate the resource allocation problem to a two-stage mixed programming model
the database group in University of South Florida (USF) and commercialized by Cheetah Data « Group-by queries are processed up to 4 times faster than a similar system from « Exact and Heuristic Algorithms are developed to solve the models efficiently

Systems, Inc. CheetahDB addresses the above challenges via a complete rethinking of the software
architecture of a DBMS under today’s multi-core hardware environment. Specifically, we redesigned
and optimized a multitude of DBMS components such as relational operator processing, query

Company Y — a leading GPU database company based in silicon valley (Fig. 6)
« Composite query (join + Group-By + aggregate) results are not obtained —

optimizer, query executor, buffer management, data indexing, and resource allocation. To address the company Y’s system delivered incorrect results i
/O bottleneck issue, our query processing model minimizes data transmission between host and  Fig. 7 shows the Join-only results | ;
decide, maximizes overlap between computation and I/O, and more important, adapts a novel multi- 5 ] o £ o o
query optimization scheme to optimize resource sharing among the workload level. Putting all efforts Cheetah DB ® Company Y CheetahDB M Company Y ' n ~ N B B |
into one system design, CheetahDB delivers query processing performance at least one order of 14 120 e 5 | N | : I E J | .
magnitude higher than competing systems, CPU-based or GPU-based. We believe our work ends the T 1.2 ) 100 ' s ——— | ! “
debate whether GPUs are advantageous over CPUs in processing database workloads with a definite S 1 S )
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support up to SQL:1999) = . Number of tuples Lo Regult;s of twq sets of experiments, each set hlghllghtl.ng the effectlvenes_s of our two
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- is 64-bi ingle-Query Performance:
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Clicat | fl : : : . o :
to Yicheng Tu) integer, and aggregate column is float * Record the running time of the four most popular queries identified in a real-world
lient Query Optimizer 'l_‘ransuclimul . . . . . .
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« Suitable for running large number of concurrent (search) queries (Fig. 8) : : : :
i i . . L » Outperforms the other three systems in all queries under different table sizes
CheetahDB Design Philosophy +  We build the GPU B+-trees by our dynamic allocator and maximize the performance P y d
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* Sophisticated designs to achieve load-balance | _ - _ which is an in-memory database setup; SF100, which is a traditional disk-based
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*  Support multiple GPUs working cooperatively (Fig. 5) + Compare CheetahDB with Company M, a record keeper in many TPC-H test results

« Supports all regular space partitioning tree types: quad/oct-tree, kd-tree

. Data-driven threading to achieve high parallelism * Outperforms Company M in all cases, with a speedup up to 36X
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