CATEGORY: ACCELERATED DATA SCIENCE - 04

POSTER CONTACT NAME

P22073 | Chengcheng Mou: chengcheng@mail.usf.edu

US CheetahDB®: A System for High-Throughput Database Processing on GPUs

Hao Li,* Chengcheng Mou,™ Napath Pitaksirianan,” Ran Rui,” Zhila Nouri-Lewis,” Mehrad Eslami,” Ruoya Sheng,® Shan

UNIVERSITY OF

SOUTH FLORIDA Lel,® Jing Wang,® and Yicheng Tu™® —
: : : : : : Cheetah Data Systems
COLLEGE OF ENGINEERING T Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA Y
® Cheetah Data Systems, Inc., Tampa, FL, USA
Abstract : : : :
GPU database has been an active topic in academic research as well as industrial practice. However, Relational Operators in CheetahDB: Group-BylAggregates Resource Allocation Among MUItlple Kernels [
existing systems have not shown significant performance advantages over CPU-based in-memory « Sorting-based and hash-based parallel Group-By kernels « Concurrent processing of kernel is both necessary (i.e., multiple queries) and feasible

DBMSs. We argue that two main factors contributed to such difficulties: (1) the CUDA programming
model, by focusing on HPC-type workloads, requires non-trivial basic research to address the many
technical challenges in developing a DBMS system software; (2) I/0O bottleneck between host and GPU

« Optimized design using shuffle instructions and multi-run grouping method (CUDA Streams)
« Group-By supports popular data types (i.e., int, long, double float, char, etc.) Aims at optimal parameter configuration for launching kernels

offsets the performance gain of on-board query processing. « Aggregates (count, average, sum, min, and max) are integrated along with * |dentify the GPU resources that related to execute multi-queries concurrently
CheetahDB is a high-performance in-memory DBMS generated from NSF-supported research at Group-By kernels for more efficient 1/0 « Formulate the resource allocation problem to a two-stage mixed programming model
the database group in University of South Florida (USF) and commercialized by Cheetah Data « Group-by queries are processed up to 4 times faster than a similar system from « Exact and Heuristic Algorithms are developed to solve the models efficiently

Systems, Inc. CheetahDB addresses the above challenges via a complete rethinking of the software
architecture of a DBMS under today’s multi-core hardware environment. Specifically, we redesigned
and optimized a multitude of DBMS components such as relational operator processing, query

Company Y — a leading GPU database company based in silicon valley (Fig. 6)
« Composite query (join + Group-By + aggregate) results are not obtained —

optimizer, query executor, buffer management, data indexing, and resource allocation. To address the company Y’s system delivered incorrect results i
/O bottleneck issue, our query processing model minimizes data transmission between host and Fig. 7 shows the Join-only results | ;
decide, maximizes overlap between computation and I/O, and more important, adapts a novel multi- 5] o £ o o
query optimization scheme to optimize resource sharing among the workload level. Putting all efforts Cheetah DB ® Company Y CheetahDB M Company Y ' n ~ N B B |
into one system design, CheetahDB delivers query processing performance at least one order of 14 120 e 5 | N | : I E J | .
magnitude higher than competing systems, CPU-based or GPU-based. We believe our work ends the T 1.2) 100 ' s ——— | ! “
debate whether GPUs are advantageous over CPUs in processing database workloads with a definite S 1 S)
‘yes.” %0.8 & 80 Fig. 11. Speedup of two query combinations that MultiQx-GPU [5] Fig 12. Speedup of different number of
€ o6 QEJ 60 49908 Optimization and Two-stage Model over sequential solution queries that MultiQx-GPU Optimization and
: . = Two-stage Model over sequential solution
Introduction of CheetahDB 3 04 5 40 J)
ot - < 0.2 a 20 16.919 . . .
» In-memory DBMS, columnar storage o o 5, S oosd 17 0288] 0742 1377 TN Experimental Comparison to Competing Systems
« Standard SQL query interface (will Dispuchand | || [gy g i 1M 3M 6M oM 12M . e .
Scheduling wunieri - 1M 3M 6M IM 12M °
support up to SQL:1999) = . Number of tuples Lo Regult;s of twq sets of experiments, each set hlghllghtl.ng the effectlvenes_s of our two
.y | | | umberortuples major innovations: novel GPU-based DBMS and combined query processing
* Optlmlzed for OLAP and Data Stream . Query Parsing Fig. 6 Performance comparison of group-by + Fig. 7 Performance comparison of running
Processing scenarios Manager e B aggregate queries) between CheetathDB and queries Joining two tables between CheetahDB i
- is 64-bi ingle-Query Performance:
« Research funded by NSF (Career Award G , Qompany Y, the data type of grloup by column is 64-bit and Company Y S
Clicat | fl : : : . o :
to Yicheng Tu) integer, and aggregate column is float * Record the running time of the four most popular queries identified in a real-world
lient Query Optimizer 'l_‘ransuclimul
- Commercialization started in 2018 — i — Surage Parallel index-b d h with B+-t financial database supporting risk management applications
1P suite: One PCT, three US patents in the arone [GEYTAGRET seaTmn Wi = e " Company 2, a6 well a5 a mainstream GPU-based in-memory database &ystam from
o . . , ,as w | - In-
p|pe||ne, more to come Fig. 1 A sketch of the CheetahDB Architecture o Support key-search and range-search operatlon Cgmganz " ry y
« Suitable for running large number of concurrent (search) queries (Fig. 8) : : : :
i i . . L » Outperforms the other three systems in all queries under different table sizes
CheetahDB Design Philosophy + We build the GPU B+-trees by our dynamic allocator and maximize the performance P y d
» Balance the core and I/O utilization: feed the CUDA cores with more work! of the GPU index-based searching operation by preprocessing the queries oo | GompamyX | | 1253 9000 | Company X -
- Optimize towards a workload rather than a single query (Fig. 8) . \(/3\/8 [g)'&eé)lroiess the queries by grouping similar queries and assigning each group to a | oy 2909 | Gomeany 2
« |f data must be transmitted, overlap it with in-core computation by CI)tC how that th hing {i _ 0 74 . the best mult 2 oo g 6000
« Concurrent kernel processing is inevitable in DBMSs: optimize the parameters! CPeUr'eS(;:Iu sbs OV(\j’ a h'e s_earcl ng ;n:e 'S Up 10 7.4 1imes from he best multi-core 7§ o g)
 Still reduce the total amount of work: use indexes! inaex-based searching impiementation " o | " 3000 k|
« CUDA does not support OS-type functionalities! Find ways to deal with them. . . o o 274 = 2000 | 1950, 1074257 \
. . . : - 200 175 0
« Memory allocation not flexible in CUDA? Use a page-based buffer pool - P s ,7 p‘ v e e T 53 ‘008 1024779 2 500, %0540 seq ata
. : : o o y | I 2 0 '
« Kernel development: need all the tricks we learned in CUDA programming “ = = T3 Ty ovs T | = = . (P o Q Qs ¥ < RS . % %
_ 0 s — Queries ueries
]]] “ Y N N :‘*‘;”;‘,d‘{;‘, fa— P Fig. 13 . Performance of CheetahDB prototype over competitors under two sizes of the facts (driver) table (Left: 500K records;
Relatlon al Operators in CheetahDB: JO' n [3] g b e e s — | | Right:10M records). The database design consists of a star-shaped structure with four tables, we fix the size of two tables to be
Fig . 8. TréeICPee_lt_ahDB _I_concur_renttcguglry processing 4M and 200K records, respectively
. Fig 7. T onstruction procedure in GPUs, each nod system model. T1, T2, ..., Tm are input tables, p1, p2, ..., . .]
Efflc!er_]t sort-merge join an_d hash join (Fig. 2) |mplgment§tlons s stored in a separate data page node on are output tables for the n queries Performance in Workload Processing:
) Maxn_mge hardware utlllzatlor) by various optimizations (Fig. 3) * Queries are generated from the TPC-H benchmark under three database sizes: SF1,
* Sophisticated designs to achieve load-balance | _ - _ which is an in-memory database setup; SF100, which is a traditional disk-based
* Support out-of-core processing with data larger than GPU memory (Fig. 4) G-PICS: An Extensible Module for Building Spatial Trees [2] database due to its large size; and SF10, which can only be partially put into memory
* Support multiple GPUs working cooperatively (Fig. 5) + Compare CheetahDB with Company M, a record keeper in many TPC-H test results

« Supports all regular space partitioning tree types: quad/oct-tree, kd-tree

. Data-driven threading to achieve high parallelism * Outperforms Company M in all cases, with a speedup up to 36X

'P1‘ ':2“"3'";‘ | . ¢ Global [. .
f | e Thread 0| Thread 1| Thread 2| Thread 3 =+ Pointer « Efficient query processing algorithms: point search, range search, within distance, k-
'Pln”;‘ - Thread 3 acquires . _ 1% Coverage 10% Coverage 50% Coverage 100% Coverage
| J Pit P12 P13 P4 f a new chunk | NN, Spat|a| JO'”S [- -] ' " = | [~— = o <5]
T > e e Witng output EEAt Putern * Support dynamic data: efficient tree updates with cost proportional to data dynamics Rl <Ay |8 a-sho B A 25| ste — |
- Y 1 * Multi-GPU support . i 6] . i
¢ Masog y 20 4 1 = ') 0
P1 P2 PS4 . o - ‘
i I Chunk 0 Chunk 1 Chunk2.Chunk4 Chunk5 o ot it O | —— ——r 1:] {l IR . m—— —— " o] - T ° R = ° o . : s L R .J': 3 ° °
: - N\)N _ H e ——— ’ e o/ 1.5 { =¥ |
) _]] _ Chunks;gng used Full chunk Availab;;unks q Srems '7;'_ Py éﬁiw - 0 ' : : . - 2 1,F : : : - J . ! , , : , , , -
Flg._2_ Shared hlstogram_— a key idea in our design of !' b INJIN, * 7 o T 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Part|t|0n|ng and Reordel’lng N GPU haSh JO|n F|g 3 Output data |S aCC]UIred from a buffer pOOI Q |, Py Nl ! |.'0 N,{ N,: }' :‘] Number of Queries Number of Quenes Number of Queries Number of Queries
instead of allocated beforehand, this solves the * . P - [| _ _ _
problem of output with sizes unknown fe oNaePee oGS (St MSTIGSip) ——— | | GACS (S -STIG Sepl) — Fig. 14. .Speedup of CheetahDB over Company M under different database sizes and query numbers
1P, flovuad I N, e i ey § B
b SMJ w/ overlap & HJ w/ overlap ez 4-GPU — :;_' . 'ue s : / ' d CO“C'USiOnS
14 SMJ w/o overlap =——"""HJ w/o overlap) 2>_GPU n -) | |)
o | 1"'GPU Query list attached to a leal node f‘. ISt , 1 ¢ p 1 . . N . . N
12 \ ~ o “ o ym ol [l « Existing GPU-based databases fall short in efficient query processing
N Wl ,‘?;-—- : *_ f) 1 < e) o v 2 . S] . .
Egiy \ * \ = N é > oW CHICS (S USTIGSigd —— | [/CAICS Sepd WSTIG (Sugd) — * The CheetahDB approach and system fills the performance gap via novel DBMS
g 8 N\ £] —T1 T I T | T architecture suitable for GPUs
) 6 \ AR R AN AN = 20 | Lo |c | [q. o 40 s S I o . r .
; n W - 1' 'il 'Iul 'll N L E 5.) « CheetahDB can be an order of magnitude faster than any existing in-memory DBMS
) I e A A I ' v v o , /
o AN IT NN AN NN NN | : 1 W amm| VY EemT References
256M 0.5B 1B 1.5B 2B 2.5B ° 1 2 3 4 5 6 7 8 9 10 11 12 00 115 2 2 50 05 1 15 2 25 3 s [1] H. Li, Y. Tu, and B. Zeng, 2019, Concurrent query processing in a GPU-based database system. PloS one 14.4 (2019)
Data Size(Number of tuples) Relation size in billion of tuples (|R|=[S)) ' Number of Input Queries (xmillion) [2] Z. Nourll and Y.. Tu. GPU-Based Parailllel.lndexm.g for Concurrent Spgtlal Query Processw?g. SSDBM 201.8. |
[3] Ran Rui and Yi-Cheng Tu. Fast Equi-Join Algorithms on GPUs: Design and Implementation. In Proceedings of the 29th International
Fig. 4 Speedup of Titan X over E5-2630v3 in running Fig. 5 Scalability of our join code under different Conference on Scientific and Statistical Database Management (SSDBM '17).
join code with large tables. SMJ: sort-merge join; HJ: number of GPU cards. _ , Fig. 10. Performance of G-PICS Spatial Query [4] A. Shahvarani and H. Jacobsen. A hybrid B+-tree as solution for in-memory indexing on CPU-GPU heterogeneous computing
Hash Join Fig. 9. Example of a quad-tree built by G- Processing over best-known GPU code (M-STIG) and platforms. SIGMOD 2016
PICS and one step in query processing highly optimized CPU code (P-CPU) [5] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang. 2014. Concurrent analytical query processing with GPUs.

Proceedings of the VLDB Endowment 7, 11 (2014), 1011-1022.

