
CONTACT NAME

Chengcheng Mou: chengcheng@mail.usf.edu
POSTER

P22073

CATEGORY: ACCELERATED DATA SCIENCE - 04

CheetahDB®: A System for High-Throughput Database Processing on GPUs
Hao Li,♱ Chengcheng Mou,♱ Napath Pitaksirianan,♱ Ran Rui,♱ Zhila Nouri-Lewis,♱ Mehrad Eslami,♱ Ruoya Sheng,✿ Shan

Lei,✿ Jing Wang,✿ and Yicheng Tu♱✿
♱ Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA

✿Cheetah Data Systems, Inc., Tampa, FL, USA

Abstract
GPU database has been an active topic in academic research as well as industrial practice. However,
existing systems have not shown significant performance advantages over CPU-based in-memory
DBMSs. We argue that two main factors contributed to such difficulties: (1) the CUDA programming
model, by focusing on HPC-type workloads, requires non-trivial basic research to address the many
technical challenges in developing a DBMS system software; (2) I/O bottleneck between host and GPU
offsets the performance gain of on-board query processing.

CheetahDB is a high-performance in-memory DBMS generated from NSF-supported research at
the database group in University of South Florida (USF) and commercialized by Cheetah Data
Systems, Inc. CheetahDB addresses the above challenges via a complete rethinking of the software
architecture of a DBMS under today’s multi-core hardware environment. Specifically, we redesigned
and optimized a multitude of DBMS components such as relational operator processing, query
optimizer, query executor, buffer management, data indexing, and resource allocation. To address the
I/O bottleneck issue, our query processing model minimizes data transmission between host and
decide, maximizes overlap between computation and I/O, and more important, adapts a novel multi-
query optimization scheme to optimize resource sharing among the workload level. Putting all efforts
into one system design, CheetahDB delivers query processing performance at least one order of
magnitude higher than competing systems, CPU-based or GPU-based. We believe our work ends the
debate whether GPUs are advantageous over CPUs in processing database workloads with a definite
“yes.”

References
[1] H. Li, Y. Tu, and B. Zeng, 2019, Concurrent query processing in a GPU-based database system. PloS one 14.4 (2019)
[2] Z. Nouri and Y. Tu. GPU-Based Parallel Indexing for Concurrent Spatial Query Processing. SSDBM 2018.
[3] Ran Rui and Yi-Cheng Tu. Fast Equi-Join Algorithms on GPUs: Design and Implementation. In Proceedings of the 29th International

Conference on Scientific and Statistical Database Management (SSDBM '17).
[4] A. Shahvarani and H. Jacobsen. A hybrid B+-tree as solution for in-memory indexing on CPU-GPU heterogeneous computing

platforms. SIGMOD 2016
[5] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang. 2014. Concurrent analytical query processing with GPUs.

Proceedings of the VLDB Endowment 7, 11 (2014), 1011–1022.

G-PICS: An Extensible Module for Building Spatial Trees [2]

• Supports all regular space partitioning tree types: quad/oct-tree, kd-tree
• Data-driven threading to achieve high parallelism
• Efficient query processing algorithms: point search, range search, within distance, k-

NN, spatial joins
• Support dynamic data: efficient tree updates with cost proportional to data dynamics
• Multi-GPU support

Fig. 9. Example of a quad-tree built by G-
PICS and one step in query processing

Fig. 10. Performance of G-PICS Spatial Query
Processing over best-known GPU code (M-STIG) and
highly optimized CPU code (P-CPU)

Resource Allocation Among Multiple Kernels [1]

• Concurrent processing of kernel is both necessary (i.e., multiple queries) and feasible
(CUDA Streams)

• Aims at optimal parameter configuration for launching kernels
• Identify the GPU resources that related to execute multi-queries concurrently
• Formulate the resource allocation problem to a two-stage mixed programming model
• Exact and Heuristic Algorithms are developed to solve the models efficiently

Fig. 11. Speedup of two query combinations that MultiQx-GPU [5]
Optimization and Two-stage Model over sequential solution

Fig. 12. Speedup of different number of
queries that MultiQx-GPU Optimization and
Two-stage Model over sequential solution

Parallel index-based search with B+-tree
• Support key-search and range-search operation
• Suitable for running large number of concurrent (search) queries (Fig. 8)
• We build the GPU B+-trees by our dynamic allocator and maximize the performance

of the GPU index-based searching operation by preprocessing the queries
• We preprocess the queries by grouping similar queries and assigning each group to a

CUDA block
• The results show that the searching time is up to 7.4 times from the best multi-core

CPU index-based searching implementation

Relational Operators in CheetahDB: Group-By/Aggregates
• Sorting-based and hash-based parallel Group-By kernels
• Optimized design using shuffle instructions and multi-run grouping method
• Group-By supports popular data types (i.e., int, long, double float, char, etc.)
• Aggregates (count, average, sum, min, and max) are integrated along with

Group-By kernels for more efficient I/O
• Group-by queries are processed up to 4 times faster than a similar system from

Company Y – a leading GPU database company based in silicon valley (Fig. 6)
• Composite query (join + Group-By + aggregate) results are not obtained –

company Y’s system delivered incorrect results
• Fig. 7 shows the Join-only results

Introduction of CheetahDB
• In-memory DBMS, columnar storage
• Standard SQL query interface (will

support up to SQL:1999)
• Optimized for OLAP and Data Stream

Processing scenarios
• Research funded by NSF (Career Award

to Yicheng Tu)
• Commercialization started in 2018
• IP suite: One PCT, three US patents in the

pipeline, more to come

CheetahDB Design Philosophy
• Balance the core and I/O utilization: feed the CUDA cores with more work!

• Optimize towards a workload rather than a single query (Fig. 8)
• If data must be transmitted, overlap it with in-core computation
• Concurrent kernel processing is inevitable in DBMSs: optimize the parameters!
• Still reduce the total amount of work: use indexes!
• CUDA does not support OS-type functionalities! Find ways to deal with them.
• Memory allocation not flexible in CUDA? Use a page-based buffer pool
• Kernel development: need all the tricks we learned in CUDA programming

Fig. 1 A sketch of the CheetahDB Architecture

Relational Operators in CheetahDB: Join [3]

• Efficient sort-merge join and hash join (Fig. 2) implementations
• Maximize hardware utilization by various optimizations (Fig. 3)
• Sophisticated designs to achieve load-balance
• Support out-of-core processing with data larger than GPU memory (Fig. 4)
• Support multiple GPUs working cooperatively (Fig. 5)

Fig. 4 Speedup of Titan X over E5-2630v3 in running
join code with large tables. SMJ: sort-merge join; HJ:
Hash Join

Fig. 5 Scalability of our join code under different
number of GPU cards.

Fig. 2 Shared histogram – a key idea in our design of
Partitioning and Reordering in GPU hash join Fig. 3 Output data is acquired from a buffer pool

instead of allocated beforehand, this solves the
problem of output with sizes unknown

Fig. 6 Performance comparison of group-by +
aggregate queries) between CheetathDB and
Company Y, the data type of group-by column is 64-bit
integer, and aggregate column is float

Fig. 7 Performance comparison of running
queries Joining two tables between CheetahDB
and Company Y

Experimental Comparison to Competing Systems
• Results of two sets of experiments, each set highlighting the effectiveness of our two

major innovations: novel GPU-based DBMS and combined query processing

Single-Query Performance:
• Record the running time of the four most popular queries identified in a real-world

financial database supporting risk management applications
• Compare CheetahDB with the most popular GPU databases from Company Y and

Company Z, as well as a mainstream CPU-based in-memory database system from
Company X

• Outperforms the other three systems in all queries under different table sizes

Performance in Workload Processing:
• Queries are generated from the TPC-H benchmark under three database sizes: SF1,

which is an in-memory database setup; SF100, which is a traditional disk-based
database due to its large size; and SF10, which can only be partially put into memory

• Compare CheetahDB with Company M, a record keeper in many TPC-H test results
• Outperforms Company M in all cases, with a speedup up to 36X

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

Q1 Q2 Q3 Q4

Ti
m

e(
m

s)

Queries

Company X

1950 1974

8028

298

Company Y

102

2093

550

3466

Company Z

477 500 540 414

CheetahDB

99.2 99.8 123 112
 0

 200

 400

 600

 800

 1000

 1200

Q1 Q2 Q3 Q4

Ti
m

e(
m

s)

Queries

Company X

55 49
175

66

Company Y

43

345

121

1281

Company Z

181 182
274 323

CheetahDB

10 10.2 48 53

Fig. 13 . Performance of CheetahDB prototype over competitors under two sizes of the facts (driver) table (Left: 500K records;
Right:10M records). The database design consists of a star-shaped structure with four tables, we fix the size of two tables to be
4M and 200K records, respectively

Fig. 14. .Speedup of CheetahDB over Company M under different database sizes and query numbers

Fig . 8. The CheetahDB concurrent query processing
system model. T1, T2, …, Tm are input tables, p1, p2, …,
pn are output tables for the n queries

Conclusions
• Existing GPU-based databases fall short in efficient query processing
• The CheetahDB approach and system fills the performance gap via novel DBMS

architecture suitable for GPUs
• CheetahDB can be an order of magnitude faster than any existing in-memory DBMS

Fig . 7. Tree construction procedure in GPUs, each node
is stored in a separate data page

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1M 3M 6M 9M 12M
El

ap
se

d
Ti

m
e

(s
ec

on
ds

)

Number of tuples

Ch eetah DB Co mpan y Y

0.084 0.286 0.742 1.377 2.2293.862
16.919

49.908

105.835

N/A
0

20

40

60

80

100

120

1M 3M 6M 9M 12M

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Number of tuples

Ch eetah DB Co mpan y Y

